71,633 research outputs found

    Modelling predicts that heat stress and not drought will limit wheat yield in Europe

    Get PDF
    Global warming is characterised by shifts in weather patterns and increases in extreme weather events. New crop cultivars with specific physiological traits will therefore be required if climate change is not to result in losses of yield and food shortages. However, the intrinsic uncertainty of climate change predictions poses a challenge to plant breeders and crop scientists who have limited time and resources and must select the most appropriate traits for improvement. Modelling is, therefore, a powerful tool to identify future threats to crop production and hence targets for improvement. Wheat is the most important crop in temperate zones, including Europe, and is the staple food crop for many millions of humans and their livestock. However, its production is highly sensitive to environmental conditions, with increased temperature and incidence of drought associated with global warming posing potential threats to yield in Europe. We have therefore predicted the future impacts of these environmental changes on wheat yields using a wheat simulation model combined with climate scenarios based on fifteen global climate models from the IPCC AR4 multi-model ensemble. Despite the lower summer precipitation predicted for Europe, the impact of drought on wheat yields is likely to be smaller than at present, because the warmer conditions will result in earlier maturation before drought becomes severe later in the summer. By contrast, the probability of heat stress around flowering is predicted to increase significantly which is likely to result in considerable yield losses for heat sensitive wheat cultivars commonly grown in north Europe. Breeding strategies should therefore focus on the development of wheat varieties which are tolerant to high temperature around flowering, rather than on developing varieties resistant to drought which may be required for other parts of the world

    Vulnerability of European wheat to extreme heat and drought around flowering under future climate

    Get PDF
    Identifying the future threats to crop yields from climate change is vital to underpin the continuous production increases needed for global food security. In the present study, the vulnerability of European wheat yield to heat and drought stresses around flowering under climate change was assessed by estimating the 95-percentiles of two indices at flowering under rain-fed conditions: the heat stress index (HSI95) and the drought stress index (DSI95). These two indices represent the relative yield losses due heat stress or drought stress around flowering that could be expected to occur once every 20 years on average. The Sirius wheat model was run under the predicted 2050-climate at 13 selected sites, representing the major wheat-growing regions in Europe. A total of 19 global climate models (GCMs) from the CMIP5 ensemble were used to construct local-scale climate scenarios for 2050 (RCP8.5) by downscaling GCMs climate projections with the LARS-WG weather generator. The mean DSI95 due to extreme drought around flowering under the baseline climate (1981–2010) was large over Europe (DSI95 ∌ 0.28), with wide site variation (DSI95 ∌ 0.0–0.51). A reduction of 12% in the DSI95 was predicted under the 2050-climate; however, vulnerability due to extreme drought around flowering would remain a major constraint to wheat yield (DSI95 ∌ 0–0.57). In contrast, HSI95 under the baseline climate was very small over Europe (HSI95 ∌ 0.0–0.11), but was predicted to increase by 79% (HSI95 ∌ 0.0–0.23) under the 2050-climate, categorising extreme heat stress around flowering as an emergent threat to European wheat production. The development of wheat varieties that are tolerant to drought and heat stresses around flowering, is required, if climate change is not to result in a reduction of wheat yield potential under the future climate in Europe

    Global warming affected some morphological characters of Pistachio trees (_Pistacia vera_ L.)

    Get PDF
    Pistachio is one of the main horticulture crops in Iran where have the first cultivation and exportation position in the world. Climate change has already affected species distribution shifts in many parts of the world and more impacts are expected for the future, yet few studies have aimed for a general understanding of the regional basis for species vulnerability. In this research meteorology data of four months (December, January, February and March) from 1991 to 2008 and Phenology data of six pistachio cultivars that ranked in 3 groups: early flowering (Kalehghoochi and Ahmadaghaei), mid flowering (Momtaz and Amiri) and late flowering (Akbari and Shahpasand) during summer of 1997, 2001-5, and 2007 were studied in Kerman province. The evaluated factors included leaf area, normal and abnormal leaves. The results showed the mean of temperature on March has significant increasing during 1991 to 2008 and fluctuations between years increased after 1999 in December, January and February. Phenological characters including leaf area and number of normal and abnormal leaves were different each year that abnormality leaves in early and late flowering cultivars had negative correlation with mean temperature of December and mid flowering cultivars had positive correlation with mean temperature of February. The level of leaf area changing in Ahamadaghaei cultivar was less than other cultivars but kallehghoochi and Akbari had the highest range which can probably be a good marker for determining the effects of temperature changes in winter on production level

    The effects of climate change and variation in New Zealand: An assessment using the CLIMPACTS system

    Get PDF
    Along with a need to better understand the climate and biophysical systems of New Zealand, the need to develop an improved capacity for evaluating possible changes in climate and their effects on the New Zealand environment has been recognised. Since the middle of 1993 the CLIMPACTS programme, has been focused on the development of such a capacity, in the first instance for the agricultural sector. the goals of this present assessment are: 1. To present current knowledge on likely scenarios of climate change and associated uncertainties in New Zealand; 2. To present current knowledge, based on quantitative analyses using a consistent set of scenarios, on the likely effects of climate change on a range of agricultural and horticultural crops of economic importance; 3. To demonstrate, by way of this report and the associated technical report, the capacity that has been developed for ongoing assessments of this kind in New Zealand. This report has been prepared for both the science and policy communities in New Zealand. There are two main components: 1. The detailed findings of the assessment, presented in a series of chapters; 2. An annex, which contains technical details on models used in the assessment

    Delayed chilling appears to counteract flowering advances of apricot in southern UK

    Get PDF
    Temperatures are rising across the globe, and the UK is no exception. Spring phenology of perennial fruit crops is to a large extent determined by temperature during effective chilling (endo-dormancy) and heat accumulation (eco-dormancy) periods. We used the apricot flowering records of the UK National Fruit Collections (NFC) to determine the influence of temperature trends over recent decades (1960 to 2014) on apricot (Prunus armeniaca L.) flowering time. Using Partial Least Squares (PLS) regression, we determined the respective periods for calculating chill and heat accumulation. Results suggested intervals between September 27th and February 26th and between December 31st and April 12th as the effective chilling and warming periods, respectively. Flowering time was correlated with temperature during both periods, with warming during chilling corresponding to flowering delays by 4.82 d°C-1, while warming during heat accumulation was associated with bloom advances by 9.85 d°C-1. Heat accumulation started after accumulating 62.7 ± 5.6 Chill Portions, and flowering occurred after a further 3744 ± 1538 Growing Degree Hours (above a base temperature of 4°C, with optimal growth at 26°C). When examining the time series, the increase in temperature during the chilling period did not appear to decrease overall chill accumulation during the chilling period but to delay the onset of chill accumulation and the completion of the the average chill accumulation necessary to start heat accumulation. The resulting delay in heat responsiveness appeared to weaken the phenology-advancing effect of spring warming. These processes may explain why apricot flowering time remained relatively unchanged despite significant temperature increases. A consequence of this may be a reduction of frost risk for early flowering crops such as apricot in the UK

    Participatory varietal selection of potato using the mother & baby trial design: A gender-responsive trainer’s guide.

    Get PDF
    This guide aims to provide step-by-step guidance on facilitating and documenting the PVS dynamics using the MBT design to select, and eventually release, potato varieties preferred by end-users that suit male and female farmers ’different needs, diverse agro-systems, and management practices, as well as traders ’and consumers’ preferences

    Assessment of the potential impacts of plant traits across environments by combining global sensitivity analysis and dynamic modeling in wheat

    Full text link
    A crop can be viewed as a complex system with outputs (e.g. yield) that are affected by inputs of genetic, physiology, pedo-climatic and management information. Application of numerical methods for model exploration assist in evaluating the major most influential inputs, providing the simulation model is a credible description of the biological system. A sensitivity analysis was used to assess the simulated impact on yield of a suite of traits involved in major processes of crop growth and development, and to evaluate how the simulated value of such traits varies across environments and in relation to other traits (which can be interpreted as a virtual change in genetic background). The study focused on wheat in Australia, with an emphasis on adaptation to low rainfall conditions. A large set of traits (90) was evaluated in a wide target population of environments (4 sites x 125 years), management practices (3 sowing dates x 2 N fertilization) and CO2CO_2 (2 levels). The Morris sensitivity analysis method was used to sample the parameter space and reduce computational requirements, while maintaining a realistic representation of the targeted trait x environment x management landscape (∌\sim 82 million individual simulations in total). The patterns of parameter x environment x management interactions were investigated for the most influential parameters, considering a potential genetic range of +/- 20% compared to a reference. Main (i.e. linear) and interaction (i.e. non-linear and interaction) sensitivity indices calculated for most of APSIM-Wheat parameters allowed the identifcation of 42 parameters substantially impacting yield in most target environments. Among these, a subset of parameters related to phenology, resource acquisition, resource use efficiency and biomass allocation were identified as potential candidates for crop (and model) improvement.Comment: 22 pages, 8 figures. This work has been submitted to PLoS On

    Snow tussocks, chaos, and the evolution of mast seeding

    Get PDF
    One hitherto intractable problem in studying mast seeding (synchronous intermittent heavy flowering by a population of perennial plants) is determining the relative roles of weather, plant reserves, and evolutionary selective pressures such as predator satiation. We parameterize a mechanistic resource-based model for mast seeding in Chionochloa pallens (Poaceae) using a long-term individually structured data set. Each plant's energy reserves were reconstructed using annual inputs (growing degree days), outputs (flowering), and a novel regression technique. This allowed the estimation of the parameters that control internal plant resource dynamics, and thereby allowed different models for masting to be tested against each other. Models based only on plant size, season degree days, and/or climatic cues (warm January temperatures) fail to reproduce the pattern of autocovariation in individual flowering and the high levels of flowering synchrony seen in the field. This shows that resource-matching or simple cue-based models cannot account for this example of mast seeding. In contrast, the resource-based model pulsed by a simple climate cue accurately describes both individual-level and population-level aspects of the data. The fitted resource-based model, in the absence of environmental forcing, has chaotic (but often statistically periodic) dynamics. Environmental forcing synchronizes individual reproduction, and the models predict highly variable seed production in close agreement with the data. An evolutionary model shows that the chaotic internal resource dynamics, as predicted by the fitted model, is selectively advantageous provided that adult mortality is low and seeds survive for more than 1 yr, both of which are true for C. pallens. Highly variable masting and chaotic dynamics appear to be advantageous in this case because they reduce seed losses to specialist seed predators, while balancing the costs of missed reproductive events

    Cut-rose production in response to planting density in two contrasting cultivars

    Get PDF
    Growing in lower planting density, rose plants produce more assimilates, which can be used to produce more and/or heavier flowering shoots. The effect of planting density was investigated during a period including the first five flowering flushes of a young crop. In a heated greenhouse two cut-rose cultivars were grown under bent canopy management. ‘Akito’ on own-roots and ‘Ilios’ on ‘Natal Briar’ rootstock were planted with densities of 8 and 4 plants per m2. Starting at the end of June 2007, flowering shoots were harvested over a time span of eight months. Based on ‘flowering flushes’, times of high harvest rate, the harvesting time span could be divided into five consecutive periods, each including one flush. The cultivars showed contrasting responses to planting density. In the first three periods the response in ‘Ilios’ was extraordinary, because at low density plants did not produce more flowering shoots, as would be expected. However, the response in shoot fresh weight was larger for ‘Ilios’ than for ‘Akito’, 35% compared to 21% over the entire study period. The results imply that there was a genetic difference in the effect of assimilate availability and/or local light environment. During the first three periods, these factors can not have influenced shoot number in ‘Ilios’, while they did in ‘Akito’. It is suggested that decreases of assimilate availability in winter caused the shoot number response to emerge for ‘Ilios’ later on

    Management and drivers of change of pollinating insects and pollination services. National Pollinator Strategy: for bees and other pollinators in England, Evidence statements and Summary of Evidence

    Get PDF
    These Evidence Statements provide up-to-date information on what is known (and not known) about the status, values, drivers of change, and responses to management of UK insect pollinators (as was September 2018). This document has been produced to inform the development of England pollinator policy, and provide insight into the evidence that underpins policy decision-making. This document sits alongside a more detailed Summary of Evidence (Annex I) document written by pollinator experts. For information on the development of the statements, and confidence ratings assigned to them, please see section ?Generation of the statements? below. Citations for these statements are contained in the Summary of Evidence document
    • 

    corecore